
GreatFET One Documentation

Great Scott Gadgets

Feb 03, 2024

USER DOCUMENTATION

1 GreatFET and GNURadio 3
1.1 Requirements . 3
1.2 Adding our blocks to GNURadio-companion . 3

2 Linux Distribution Python Version Matrix 5

3 Troubleshooting 7
3.1 Why do I get a No GreatFET devices found! error when my GreatFET is plugged in? 7

4 Using GreatFET APIs 9
4.1 Getting a GreatFET object . 9
4.2 Using APIs . 9
4.3 Debugging . 9
4.4 LED . 10
4.5 GPIO . 10
4.6 Logic Analyzer . 10
4.7 Pattern Generator . 11
4.8 UART . 11
4.9 ADC . 11
4.10 DAC . 11
4.11 SWRA124/Chipcon . 12
4.12 I2C . 12

5 greatfet_i2c 13
5.1 Pin Usage . 13
5.2 Example Usage . 13
5.3 API . 14

6 greatfet_logic 15
6.1 Pin Usage . 15

7 greatfet_msp430 17
7.1 Pin Usage . 17

8 Getting Started with Firmware Development 19
8.1 Fresh install . 19
8.2 Updating your repository . 19
8.3 Installing host tools . 19
8.4 Building and flashing firmware . 20
8.5 Re-Building and flashing firmware . 20

i

9 LibGreat Verb Signatures 21
9.1 Describing Verb Signatures . 22
9.2 Repeat Specifiers . 23
9.3 Length Specifiers . 23
9.4 Element Groups . 23
9.5 Examples . 24
9.6 Omitting Verb Signatures . 25

10 GreatFET Classes 27
10.1 Class Registry . 27

11 Neighbors 29
11.1 already designed . 29
11.2 some progress made . 29
11.3 rough ideas . 30

12 How to Design a Neighbor 31
12.1 Use a Template . 31
12.2 Required Elements . 31
12.3 Bonus Row . 32
12.4 Orientation . 32
12.5 Neighbor Identification . 32
12.6 Making Your Neighbor Extra-neighborly . 32
12.7 Pin Selection . 33

13 Board Naming 35
13.1 Code Names . 35
13.2 GreatFET Trademark . 35
13.3 GreatFET and Great Scott Gadgets URLs . 35
13.4 Naming Your Neighbor . 36

14 I2C Registry 37

15 Release Process 39
15.1 tag the release . 39
15.2 make the release directory . 39
15.3 copy/update RELEASENOTES from previous release . 39
15.4 make second clone for firmware build . 39
15.5 update the firmware VERSION_STRING and compile firmware . 40
15.6 make the release archives . 40
15.7 “Draft a new release” on github . 40
15.8 announce the release . 40

ii

GreatFET One Documentation

The GreatFET project produces interface tools for hardware hacking, making, and reverse engineering.

USER DOCUMENTATION 1

GreatFET One Documentation

2 USER DOCUMENTATION

CHAPTER

ONE

GREATFET AND GNURADIO

The GreatFET platform can easily interface with GNURadio – and several gnuradio-companion blocks are available to
make using GreatFET+GNURadio easier. These blocks include support for various neighbors (e.g. Gladiolus blocks
for Software Defined Infrared) and a variety of other inputs and outputs, which are lumped into the ‘Software Defined
Everything’ category.

1.1 Requirements

You’ll need an up-to-date GNURadio environment to use our blocks. This means:

• GNURadio >= 3.8, built with python3*

• python 3.6+

It’s possible these blocks will work with GNURadio on lower python versions; but these aren’t our development targets
and aren’t fully supported.

1.2 Adding our blocks to GNURadio-companion

The easiest way to add our blocks to GNURadio is to modify our local GNURadio configuration. On Linux and macOS,
this file is located at ~/.gnuradio/config.conf.

Open this file, and find the section that’s headed [grc]; or create the relevant section if it doesn’t exist.

[grc]
<existing keys here>

We’ll want to add the location of our blocks to the configuration file’s local_blocks_path. We can determine the
location of our blocks using the gf info command:

$ gf info --host
Host tools info:

host module version: 2019.5.1
pygreat module version: 2019.9.1
python version: 3.8.0 (default, Oct 23 2019, 18:51:26)

module path: /home/user/.local/lib/python3.8/site-packages/greatfet
command path: /home/user/.local/lib/python3.8/site-packages/greatfet/commands
gnuradio-companion block path: /home/user/.local/lib/python3.8/site-packages/

→˓greatfet/gnuradio

3

GreatFET One Documentation

In the output above, the last line points out our GRC block path. We’ll add this to the local_block_path entry in our
configuration file:

[grc]
local_blocks_path = /home/user/.local/lib/python3.8/site-packages/greatfet/gnuradio

If you want to have multiple entries, here – for example, if existing entries are already present – you can separate
multiple paths using colons, similar to Linux paths:

[grc]
local_blocks_path = /home/user/.local/lib/python3.8/site-packages/greatfet/gnuradio:/
→˓home/user/my_blocks

The next time you start GRC, you should see new headings (e.g. SDIR and Software Defined Everything) in your
list of available blocks.

4 Chapter 1. GreatFET and GNURadio

CHAPTER

TWO

LINUX DISTRIBUTION PYTHON VERSION MATRIX

3.5 3.6 3.7 3.8
Ubuntu 16.04 LTS (Xenial) 18.04 LTS (Bionic) 19.04 (Disco) None
Debian Oldstable (Stretch) None Stable (Buster) Experimental
Homebrew Yes Yes Default Yes
Kali Current

5

GreatFET One Documentation

6 Chapter 2. Linux Distribution Python Version Matrix

CHAPTER

THREE

TROUBLESHOOTING

3.1 Why do I get a No GreatFET devices found! error when my Great-
FET is plugged in?

It is possible that your GreatFET has been connected to the USB1 side, which is where your target device should be
plugged in. To fix this you will want to connect your GreatFET to your host device (such as your computer) via the
USB0 side. There are USB0 and USB1 labels on the board.

7

GreatFET One Documentation

8 Chapter 3. Troubleshooting

CHAPTER

FOUR

USING GREATFET APIS

4.1 Getting a GreatFET object

A GreatFET object may be created with the following Python code:

import greatfet

gf = greatfet.GreatFET()

gf shell will do this automatically before spawning an IPython instance. greatfet.GreatFET() can also take the
same keyword arguments as PyUSB’s usb.find(), to allow specifying a device e.g. by serial number.

4.2 Using APIs

LibGreat provides the general comms API for talking to LibGreat devices.

Generically, APIs can be accessed in Python as gf.apis.<api_name>, e.g. gf.apis.firmware, for the firmware
API. Alternatively, the same objects can be accessed by API names as strings via the gf.comms.apis dict.

On the command line, you can list the APIs supported by a GreatFET with greatfet info -A.

Some APIs are also additionally exposed as “interfaces” on a GreatFET object, e.g. gf.<interface>. These are
primarily for convenience—they provide default configurations and simplified interfaces for their relevant APIs.

Some APIs also have command line tools as helpers. These will be subcommands of greatfet (which can be shortened
to gf). Invoking greatfet without any arguments will list the currently supported subcommands.

4.3 Debugging

In the event that something does not goes as expected, you can run greatfet dmesg on the command line to get a
log of events that have occured on the GreatFET. From Python, you can run gf.read_debug_ring() to get a string
object for the same text.

The debug ring-buffer persists across soft resets (including e.g. firmware flashes), but not across hard-resets, like
pressing the reset button or unplugging and replugging the device.

gf.apis.debug.peek and gf.apis.debug.poke can also be used to read from and write to raw memory addresses,
for advanced debugging.

9

https://github.com/greatscottgadgets/libgreat

GreatFET One Documentation

4.4 LED

LEDs are a simple place to start. GreatFET Azalea has 4 LEDs, though LED 1 blinks on and off periodically as a
“heartbeat” by default. Note that the LEDs are 1-indexed!

There is a convenience interface in Python:

gf.leds[2].on()
gf.leds[2].off()
gf.leds[2].toggle()

As well as a command-line helper tool.

$ greatfet led --on 2
$ greatfet led --off 2
$ greatfet led -t 2

4.5 GPIO

The GPIO peripheral can be easily controlled from the convenience interface gf.gpio.

gf.gpio.read_pin_state((1, 6)) will read the logic value for GPIO pin 1[6] (pin mappings for peripherals can
be found here) Likewise gf.gpio.set_pin_state((1, 6), 0) can be used to set the same pin to logic low.

4.6 Logic Analyzer

The logic analysis functionality is easiest from the command-line helper. For example:

$ greatfet logic -p out.sr -f 2M -n 4

This will sample 4 channels at 2MSPS, and output a Sigrok-compatible file as out.sr.

The default pin mappings are as follows:

Channel Pin
0 J1_P4
1 J1_P6
2 J1_P28
3 J1_P30
4 J2_P36
5 J2_P34
6 J2_P33
7 J1_P7
8 J1_P34
9 J2_P9
10 J1_P25
11 J1_P32
12 J1_P31
13 J2_P3
14 J1_P3
15 J1_P5

10 Chapter 4. Using GreatFET APIs

https://gf-pinout.greatscottgadgets.com/

GreatFET One Documentation

4.7 Pattern Generator

Pattern generation functionality can be done from the command-line helper. For example:

$ greatfet pattern counter -n 1K -w 8

This will generate an 8-bit counter at 1KHz.

The default pin mappings are the same as the mappings for logic analysis.

4.8 UART

This class can be used to talk “serial”, and has both a command-line helper tool available and a convenience interface
as gf.uart.

If you happen to have a USB-serial converter handy, then you can test it out by connecting TXD, RXD, and GND of
the USB-serial converter to J1_P34, J1_P33, and any available ground pin (like J1_P1) respectively. Then you can
simply run greatfet uart, and e.g. on Linux, dterm /dev/ttyUSB0 115200. Typing in either terminal will show
the respective characters on the other.

Naturally, all of the same functionality can be used from Python via the uart interface:

data = gf.uart.read()
gf.uart.write(b"Hello, world!")

4.9 ADC

The analog to digital converter is easily usable from the command line helper tool. Simply running greatfet adc
will print the voltage on ADC0 (mapped to J2_P5 by default).

In Python, there is an interface for the default ADC configuration as ADC0. To read a single sample:

gf.adc.read_samples(1)

The 10-bit digital to analog converter has a command line helper too, with greatfet dac -S <value>. Note that
the value must be the number to set the DAC too, not a voltage. For example, greatfet dac -S 512 will set the
DAC to ~1.6 volts.

4.10 DAC

GreatFET’s digital to analog converter is mapped to J2_P5. The API allows you to either set the raw value loaded into
the DAC, or specify a target voltage (which is calculated as value = (voltage * 1024) / 3.3). Note however
that the voltage must be specified in millivolts, e.g.: gf.apis.dac.set_voltage(int(2.5 * 1000)) will set the
DAC voltage to 2.5.

The command-line helper tool can take either the raw value or a voltage:

$ greatfet dac -f raw 776
$ greatfet dac 2.5

Both will set the DAC to ~2.5 volts.

4.7. Pattern Generator 11

GreatFET One Documentation

4.11 SWRA124/Chipcon

This class is used to debug microcontrollers implementing the CC1110/CC2430/CC2510 debug interface described in
SWRA124.

For simple dumping and flashing of firmware, it is easiest to use the command line utility:

$ greatfet chipcon --read firmware.bin --length 0x8000
$ greatfet chipcon --write firmware.bin

The same functionality, as well as more advanced functionality, can be accessed programmatically through the Python
API:

cc = gf.create_programmer('chipcon')

`debug_init` must be called before any debugging can happen.
cc.debug_init()

Read the entire flash (for a 32k flash).
flash = cc.read_flash(start_address=0, length=32 * 1024)

Reprogram the flash.
cc.program_flash(flash, erase=True, verify=True)

4.12 I2C

Class for communication over I2C buses. Can be used from Python, e.g. gf.i2c.scan(), or with the command-line
helper, e.g. gf i2c --scan.

12 Chapter 4. Using GreatFET APIs

CHAPTER

FIVE

GREATFET_I2C

greatfet_i2c is a tool for talking to an I2C device with GreatFET.

5.1 Pin Usage

signal symbol pin
SDA I2C0_SDA J2.39
SCL I2C0_SCL J2.40

5.2 Example Usage

scan(GreatFET) - scans the GreatFET I2C Bus for connected I2C devices and displays responses from 7-bit addresses.

$ gf i2c -z
I2C address(es):
0x0 W
0x20 W
0x20 R
0x7c W

******** W/R bit set at each valid address ********
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: W- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: WR -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- -- -- -- -- -- W- -- -- --

read(GreatFET, address, receive_length, log_function) - reads a ‘receive_length’ amount of bytes over the I2C bus from
a device with the specified 7-bit address. Optionally displays results.

write(GreatFET, address, data, log_function) - writes bytes over the I2C bus to a device with the specified 7-bit address.
Optionally displays results.

13

https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/commands/greatfet_i2c.py#L67
https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/commands/greatfet_i2c.py#L50
https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/commands/greatfet_i2c.py#L60

GreatFET One Documentation

$ gf i2c -a 0x20 -w 0x01 0x02 0x03 -r 2 -v
Trying to find a GreatFET device...
GreatFET One found. (Serial number: 000057cc67e630318c57)
Writing to address 0x20
I2C write status: 0x18
Bytes received from address 0x20:
0x3
0x3
I2C read status: 0x40

Transmits bytes ‘0x01’, ‘0x02’, and ‘0x03’ to an I2C device with address 0x20 (Crocus in this case), receives 2 bytes
in response, and displays the results.

5.3 API

• I2CDevice(GreatFET, address) - class representation of an I2C device that can send/receive data over the Great-
FET I2C bus using the given address

• I2CBus(GreatFET) - class representation of a GreatFET I2C bus

• attach_device(I2CDevice) - attaches a given I2C device to this bus.

• read(address, receive_length) - reads data from the I2C bus.

• write(address, data) - writes data to the I2C bus.

• transmit(address, data, receive_length) - wrapper function for back to back TX/RX.

• scan() - TX/RX over the I2C bus, and receives ACK/NAK in response for valid/invalid addresses.

14 Chapter 5. greatfet_i2c

https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/interfaces/i2c_device.py#L8
https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/interfaces/i2c_bus.py#L8
https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/interfaces/i2c_bus.py#L45
https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/interfaces/i2c_bus.py#L59
https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/interfaces/i2c_bus.py#L83
https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/interfaces/i2c_bus.py#L102
https://github.com/greatscottgadgets/greatfet/blob/master/host/greatfet/interfaces/i2c_bus.py#L119

CHAPTER

SIX

GREATFET_LOGIC

greatfet_logic is a logic analyzer implementation for GreatFET. It uses the SGPIO peripheral in the LPC4330 to monitor
the state of 8 pins and combines those into an 8-bit integer streamed to the USB host.

6.1 Pin Usage

signal symbol pin
SPGIO0 P0_0 J1.04
SGPIO1 P0_1 J1.06
SGPIO2 P1_15 J1.28
SGPIO3 P1_16 J1.30
SGPIO4 P6_3 J2.36
SGPIO5 P6_6 J2.34
SGPIO6 P2_2 J2.33
SGPIO7 P1_0 J1.07

15

GreatFET One Documentation

16 Chapter 6. greatfet_logic

CHAPTER

SEVEN

GREATFET_MSP430

greatfet_430 implements MSP430 JTAG functions.

7.1 Pin Usage

signal symbol pin
TDO P1_3 J1.40
TDI P1_4 J1.39
TMS P1_20 J1.37
TCK P3_4 J2.28
RST P4_3 J2.09
TST P4_2 J2.08

17

GreatFET One Documentation

18 Chapter 7. greatfet_msp430

CHAPTER

EIGHT

GETTING STARTED WITH FIRMWARE DEVELOPMENT

Here’s some quick info for people with GreatFETs who want to get started with firmware development.

8.1 Fresh install

To get started, you will need to install the dependencies:

sudo apt-get install gcc-arm-none-eabi libnewlib-arm-none-eabi cmake make dfu-util␣
→˓python-setuptools python-yaml
pip install pyyaml

Acquire the code by cloning the repository:

git clone --recursive https://github.com/greatscottgadgets/greatfet.git

8.2 Updating your repository

You should already have the prerequisites installed as above. Now update the GreatFET repository that you have
previously cloned:

cd greatfet
git pull
git submodule update

8.3 Installing host tools

The host tools are written in Python. To install them, run the following from the root of the cloned repository:

pushd libgreat/host/
python setup.py build
sudo python setup.py install
popd

pushd host/
python setup.py build
sudo python setup.py install
popd

19

GreatFET One Documentation

8.4 Building and flashing firmware

The firmware currently constitutes two parts, libopencm3 and greatfet_usb. We build the library first, then the
firmware on top of it:

cd firmware/libopencm3
make
cd ../greatfet_usb
mkdir build
cd build
cmake ..
make

This will produce a file named greatfet_usb.bin which can be written to a GreatFET One using
greatfet_firmware -w greatfet_usb.bin.

If you need to recover from an empty flash or non-functional firmware, you will need to use DFU to recover. Remember,
if the firmware written to flash was non-functional, the DFU version will be too, you will need to return to a known
good version to restore GreatFET.

To write the file, first hold the DFU button while resetting the board, lsusb will show a line such as Bus 002
Device 007: ID 1fc9:000c NXP Semiconductors, which is the NXP LPC4330 in DFU mode. You can write
the firmware to the GreatFET One’s RAM using greatfet_firmware -V greatfet_usb.bin. The firmware will
run immediately. If you wish to run from ROM you then need to use greatfet_firmware as above.

8.5 Re-Building and flashing firmware

When rebuilding software the following is recommended

cd firmware/libopencm3
make clean
make
cd ../greatfet_usb
mkdir build
cd build
cmake ..
make clean
make

This will produce a file named greatfet_usb.bin which can be written to a GreatFET One using
greatfet_firmware -w greatfet_usb.bin.

20 Chapter 8. Getting Started with Firmware Development

CHAPTER

NINE

LIBGREAT VERB SIGNATURES

libgreat verbs are designed to be self-describing: each verb provided by a libgreat device includes a small body of
metadata that can be queried by the host:

{
// The name of the verb. These are typically named like C function names.
.name = "sum_and_difference",

// The handler function for the given verb. This is the verb definition we
// provided above.
.handler = example_verb_sum_and_difference,

// A short piece of documentation for the verb.
.doc = "Computes the sum and difference of two ints.",

// The signature for the verb's arguments. This roughly matches python's
// struct.pack format; see the wiki documentation for more information.
.in_signature = "<II",

// The signature for the verb's return values. This roughly matches python's
// struct.pack format; see the wiki documentation for more information.
.out_signature = "<II",

// The names of the arguments to the verb.
.in_param_names = "a, b",

// The names of the return values for the verb.
.out_param_names = "sum, difference"

},

This meta-data can include machine-parseable descriptions of each verb’s signatures in the form of a short, machine-
readable string. These strings include a description of the arguments to the function (the in-signature) and of the
function’s multiple return values (the out-signature); and effectively describe the data formats sent to and from the
device during execution of a verb.

Providing descriptions of these signatures is optional, but it’s highly recommended that you do so whenever possi-
ble: the libgreat host library can use these signatures to generate code for you – making device communications
transparent to your code!

21

GreatFET One Documentation

9.1 Describing Verb Signatures

Verb signatures are provided in a format that’s heavily inspired by Python’s struct module – in fact, the formats are
mostly identical. To provide some additional flexibility, we support a few additional format characters. The standard
and added format characters are described below:

Table 1: Verb Signatures

Format Bytes C-Type Python
Type

libgreat parse function libgreat response function

x (1) 1 none none comms_argument_read_buffer(
trans, 1, NULL)

comms_argument_read_buffer(
trans, 1, NULL)

c 1 char string of
length 1

comms_argument_parse_uint8_t comms_response_add_uint8_t

b 1 int8_t integer comms_argument_parse_int8_t comms_response_add_int8_t
B 1 uint8_t integer comms_argument_parse_uint8_t comms_response_add_uint8_t
? 1 bool /

_Bool
integer comms_argument_parse_bool comms_response_add_bool

h 2 int16_t integer comms_argument_parse_int16_t comms_response_add_int16_t
H 2 uint16_t integer comms_argument_parse_uint16_t comms_response_add_uint16_t
i 4 int32_t integer comms_argument_parse_int32_t comms_response_add_int32_t
I 4 uint32_t integer comms_argument_parse_uint32_t comms_response_add_uint32_t
l 4 int32_t integer comms_argument_parse_int32_t comms_response_add_int32_t
L 4 uint32_t integer comms_argument_parse_uint32_t comms_response_add_uint32_t
q 8 int64_t integer comms_argument_parse_int64_t comms_response_add_int64_t
Q 8 uint64_t integer comms_argument_parse_uint64_t comms_response_add_uint64_t
f 4 float float comms_argument_parse_float comms_response_add_float
d 8 double float comms_argument_parse_double comms_response_add_double
s
(2)(3)(6)

char[] string comms_argument_read_buffer comms_response_add_raw

p (2)(6) char[] string comms_argument_parse_uint8_t /
comms_argument_read_buffer

comms_response_add_uint8_t
/ comms_response_add_raw

S (4) char[] string comms_argument_read_string comms_response_add_string
X
(3)(5)(6)

uint8_t bytes of
length 1

comms_argument_read_string comms_response_add_string

note number description
(1) null padding byte; rarely used
(2) see python docs
(3) typically used with a numeric prefix
(4) encodes a null-terminated string
(5) encodes raw bytes; repeated elements are merged into a single entry
(6) numeric prefixes behave differently; see below

libgreat data is always of standard size, and always little-endian. Accordingly, every non-empty method signature
must begin with a ‘<’. Exceptions are made for methods that expect no arguments or return no values, which can
provide an empty string.

22 Chapter 9. LibGreat Verb Signatures

https://docs.python.org/2/library/struct.html

GreatFET One Documentation

9.2 Repeat Specifiers

Most types can be modified with a numeric repeat specifier; this acts the same as if the element were repeated multiple
times. For example:

4I

is exactly equivalent to:

IIII

This matches the behavior of Python’s pack and unpack. Unless denoted with note (6) in the table above, each type
supports a repeat specifier.

libgreat adds one additional repeat specifier: a repeat specifier of * specifies that all a remaining data or arguments
should be interpereted as instances of the provided type. Accordingly, a verb with an in-signature of <*I accepts any
number of uint32_t arguments (including zero); a verb with an out-signature of <II*B would always return two
32-bit integers, followed by any number of single bytes.

9.3 Length Specifiers

A handful of format specifiers interpret numeric prefixes as element lengths, rather than repeat counts. These types
interpret these specifiers as documented below:

type interpretation
s the specified element represents a string of N characters, where N is the length specifier
p the specified element represents a pascal string of maximum length N, where N is the

length specifier
X the specified element represents a string of N bytes, where N is the length specifier

For the s and X specifiers, a length specifier of * indicates that the relevant string can be expected to take up all of
the remaining data. Note that the format S does accepts a repeat specifier and not a length specifier, so the string 32S
denotes 32 null-terminated strings.

9.4 Element Groups

libgreat’s format strings add one additional feature: format groups. Format groups use parenthesis to create groups
of elements, which are handled slightly differently:

• On the python side, each format group accepts a single tuple (or list) that should contain each of the parenthesized
types. So, the group <(IIB) would expect a single tuple contianing three integers, which would be packed as
two consecutive uint32_ts followed by a uint8_t.

• Each format group can accept a repeat specifier; so the string <8(IB) would denote eight pairs of one uint32_t
and one uint8_t. A repeat specifier of * is also acceptable, which implies that the entire remainder of the
arguments accepted or data parsed will consist of pairs of uint32_t and uint8_t.

9.2. Repeat Specifiers 23

GreatFET One Documentation

9.5 Examples

It may help to consider an example RPC with the following meta-data:

{ .name = "sum_polar", .handler = example_verb_sum_polar, .in_signature = "<*(II)",
.out_signature = "<II", .in_param_names = "magnitudes_and_angles", .out_param_names␣

→˓= "sum_magnitude, sum_angle",
.doc = "Sums together a collection of polar coordinates." },

The method’s in-signature, <*(II), demonstrates that the method expects any number of two-element pairs, which
each contain a pair of integers. Accordingly, we might call it as follows:

Assuming the RPC is available as gf.apis.example.sum_polar:
magnitude, angle = gf.apis.example.sum_polar((1, 2,), (3, 4),)

Each argument will be intepreted as a pair of 32-bit integers; so the resultant data stream will wind up looking like:

<uint32_t '1'><uint32_t '2'><uint32_t '3'><uint32_t '4'>

On the device side, we might read the data as follows:

static int example_verb_sum_polar(struct command_transaction *trans)
{

uint32_t sum_magnitude = 0, sum_angle = 0;

// While there's still data available in the string, grab vectors the data-stream.
while (comms_argument_data_remaining(trans)) {

// Read the next pair of vector components from the data stream...
uint32_t magnitude = comms_argument_parse_uint32_t(trans);
uint32_t angle = comms_argument_parse_uint32_t(trans);

// ... do your math here.
// <left as an exercise to the reader>

}

// Check to make sure we actually got all the pairs we tried to read.
// If we didn't, this function will fail out!
if (!comms_transaction_okay(trans)) {

return EBADMSG;
}

// And respond with the relevant data.
comms_response_add_uint32_t(trans, sum_magnitude);
comms_response_add_uint32_t(trans, sum_angle);
return 0;

}

In this case, we repeatedly call comms_argument_parse_uint32_t to capture each piece of the input stream; using
comms_argument_data_remaining to check how much data is left.

24 Chapter 9. LibGreat Verb Signatures

GreatFET One Documentation

9.6 Omitting Verb Signatures

In some cases, we may not exactly be able to describe our data format using the strings above; or we may not know the
data format until run-time. In these cases, the verb signature can be replaced with the string "*", which indicates that
the signature is too complex to be handled automatically.

Using this signature allows us to be flexible, but comes at a significant cost: the host code can no longer automatically
generate RPC methods for us. It becomes our responsibility to provide code on the host side for to interface with these
verbs. Typically, this is accomplished using the execute_raw_command method of the CommsBackend class. See the
on-line help for more documentation:

from pygreat.comms import CommsBackend
help(CommsBackend.execute_raw_command)

9.6. Omitting Verb Signatures 25

GreatFET One Documentation

26 Chapter 9. LibGreat Verb Signatures

CHAPTER

TEN

GREATFET CLASSES

The new GreatFET Communications Protocol uses a simple Class/Verb scheme to organize protocol-independent com-
mands. Classes organize groups of related functions, while verbs provide the functions themselves. This very much
parallels the organization of GoodFET commands.

Examples of classes:

• SPI functionality

• FaceDancer (“GreatDancer”) functionality

• Debug utilities

• GPIO

Examples of verbs:

• Configure the SPI bus to set e.g. polarity

• Read a USB1 status register (for consumption by the FaceDancer host)

• Return the contents of the device’s debug ring

• Set a particular pin to a given value

Each class is identified by a unique 32-bit integer. Each verb is identified by a separately-namespaced 32-bit integer.
To add a class to GreatFET, first reserve its number in the Class Registry below.

10.1 Class Registry

Class Number Class Name Description
0x0 core core device identification functionality
0x1 firmware verbs for working with/updating device firmware
0x10 debug debug utilities
0x11 selftest utilities for self-testing libgreat-based boards
0x100 example example verbs meant to illustrate the comms protocol
0x101 spi_flash verbs for programming SPI flashes
0x102 heartbeat control the GreatFET’s idle/”heartbeat” LED
0x103 gpio raw control over the GreatFET’s GPIO pins
0x104 greatdancer remote control over the GreatFET’s USB1 port in device

mode, for e.g. FaceDancer
0x105 usbhost remote control over the GreatFET’s USB port in host

mode, for e.g. FaceDancer
continues on next page

27

GreatFET One Documentation

Table 1 – continued from previous page
Class Number Class Name Description
0x106 glitchkit c control over the GlitchKit API, and control over simple

triggers
0x107 glitchkit_usb control over functionality intended to help with timing

USB fault injection
0x108 i2c communication as an I2C controller
0x109 spi communication as SPI controller
0x10A leds control over a given board’s LEDs
0x10B jtag functions for debugging over JTAG
0x10C jtag_msp430 MSP430 specific JTAG functions
0x10D logic_analyzer allows one to use the GreatFET’s SGPIO interface as a

logic analyzer
0x10E sdir Functionality for Software Defined Infrared
0x10F usbproxy Firmware functionality supporting USBProxy
0x110 pattern_generator allows one to use the GreatFET’s SGPIO interface as a

pattern generator
0x111 adc analog to digital converter functionality
0x112 uart functionality for talking ‘serial’
0x113 usb_analysis functionality for USB analysis e.g. with Rhododendron
0x114 swra124 debugging/programming for TI cc111x, cc243x, and

cc251x
0x115 loadables API for loading and running small firmware extensions
0x116 clock_gen clock generation / control
0x117 benchmarking measurement of GreatFET communications and func-

tions
0x118 can functionality for communication over CAN
0x119 SWD functionality for communicating with ARM SWD inter-

faces

28 Chapter 10. GreatFET Classes

CHAPTER

ELEVEN

NEIGHBORS

11.1 already designed

• Begonia: a GIMME for GreatFET

• Crocus: nRF24L01+

• Daffodil: through-hole prototyping

• Scorzonera: interface for FLIR PM-series thermal cameras (AM7969 & RS232)

• Spot: a chonky indicator LED

11.2 some progress made

• Canna: basic 2-channel CAN neighbor

• Edelweiss: CC1310 (depending on progress, could consider newer cc1352 that supports more)

• Foxglove: advanced level shifting and probing (support for +/- 12v would be awesome. . .)

• Gladiolus: IR

• Heliopsis: googly eyes

• Hydrangea: NFC

• Indigo: ChipWhisperer 20-Pin Connector + Voltage Glitching

• Jasmine: Lithium Polymer battery pack/charger

• Kniphofia: iCE40 FPGA capable of remapping neighbor pins

• Lily: RF power detector

• Lucky Bamboo: quadruple 2.4 GHz ADF7242 transceiver for monitoring Bluetooth LE advertising channels

• Magnolia: TDR, dual ethernet (LAN tap)

• Narcissus: a jig for testing GreatFET One

• Orchid: Breakout board for common hardware hacking interfaces

• Peony: SDR based on AT86RF215IQ

• Quince: 2.4 GHz SDR using 1 bit ADC over SGPIO

• Rhododendron: Hi-Speed USB passive sniffer

• Stellaria: experimental random number generator

29

https://github.com/greatfet-hardware/begonia
https://github.com/greatfet-hardware/crocus
https://github.com/greatfet-hardware/daffodil
https://github.com/miek/scorzonera
https://github.com/straithe/NeighbourSpotHardware
https://github.com/tarikku/canna-greatfet-neighbor
https://github.com/greatfet-hardware/foxglove
https://github.com/greatfet-hardware/gladiolus
https://github.com/greatscottgadgets/greatfet/wiki/Indigo
https://github.com/greatfet-hardware/jasmine
https://github.com/greatscottgadgets/greatfet/wiki/Kniphofia
https://github.com/greatfet-hardware/lily
https://github.com/greatfet-hardware/luckybamboo
https://github.com/greatscottgadgets/greatfet/wiki/Orchid
https://github.com/greatscottgadgets/greatfet/wiki/Peony
https://github.com/greatfet-hardware/quince

GreatFET One Documentation

• Tulip: an awesome blinky neighbor

• Ursinia: Grove base

11.3 rough ideas

• RNG

• DAQ

• pulse generation (TTL)

• arbitrary waveform generation

• magstripe

• barcode

• dual cc1101

• cc1200 + cc2500 for rfcat-like functionality in Sub-GHz and 2.5 GHz

• cc1352 for WiFi, BLE 5, Zigbee, Thread, Wireless M-Bus, 802.15.4g, 6LoWPAN, KNX RF, Wi-SUN®, and
2FSK/4FSK proprietary protocols

• Fieldbus Neighbor with CAN, RS-232, TIA-422, TIA-485 (possibly support for two of these neighbors operating
at the same time for MitM and other dual interface abilities)

• ODB-II ?

• DTMF

• NFC/RFID

• DPA

• JTAG (like bus blaster and/or Black Magic Probe) (could be satisfied by Foxglove)

• SX1257 (SDR, no FPGA needed)

• SD card

• clock generator (for multi-HackRF)

• ultrasound

• USB Type-C sniffer

• LCD

• nRF8001

• general comms: Ethernet, Bluetooth, Wi-Fi, etc.?

• one or more of the Cypress Wi-Fi and/or Bluetooth chips formerly owned by Broadcom

• KNX

• mmWave sensor/radar

• energy harvesting (buck/boost)

• USB Type-C power delivery, accessory mode, alternate mode breakout/sniff/hack

• weather station

• zero insertion force neighbor

30 Chapter 11. Neighbors

https://github.com/greatfet-hardware/ursinia

CHAPTER

TWELVE

HOW TO DESIGN A NEIGHBOR

This guide will help you design a neighbor, an add-on board for GreatFET.

12.1 Use a Template

The easiest way to get started is to use a neighbor template with KiCad to edit the design. Clone the neighbor-template
repository locally:

git clone https://github.com/greatfet-hardware/neighbor-template.git

Then in KiCad select File > New > Project from Template. In the Project Template Selector click the User Templates tab
and then click the Browse button. In the file browser select the neighbor-template directory. Two GreatFET Neighbor
icons should now appear in the Project Template Selector. Select either the two-layer template or the four-layer template
depending on how many copper layers you would like your PCB to have and click OK.

Type a name for your project and have fun designing it! In the schematic editor you will see some components that
have already been added for you. Some of these are required (see below), and others are optional elements that you
may wish to delete. Pay attention to the various tips below while you work on your design.

If this is your first time using KiCad, you may wish to go through Getting to Blinky or one of the other KiCad tutorials
before editing your neighbor.

12.2 Required Elements

Every neighbor should connect to both of the 2x20, 2.54mm pin headers (J1 and J2) on GreatFET. You can use female
stackable headers mounted on the top of your neighbor, or you can use male headers mounted on the bottom if you do
not want your neighbor to be stackable. For mechanical stability, use 2x20 headers (not headers with fewer pins) even
if you don’t need to use very many pins.

Our favorite header part is Samtec SSQ-120-23-G-D, but it is a bit expensive due to the gold plating and low insertion
force features. Any female header from the Samtec SSQ series with 10 mm post length (e.g. SSQ-120-03-T-D) should
be fine. To get the correct post length, look for a “3” in the last numeric position of the part number (SSQ-xxx-x3-x-x).
An important feature of the SSQ series is that the posts have a square cross sections. We have experienced unreliable
connections with lower cost headers that have flat, rectangular post cross sections.

Except for +5V, all pins on the neighbor interface are referenced to 3.3 V.

You may power your neighbor from the 3.3 V supply (VCC) provided by the GreatFET, but a stack of neighbors may
draw a total of only 150 mA from this supply. If you need more current or a different voltage, use +5V on J2 and
implement your own voltage regulation. As a general rule, if your neighbor draws more than 50 mA consider adding
your own voltage regulation to ensure that other neighbors are able to draw from VCC.

31

https://github.com/greatfet-hardware/neighbor-template
https://contextualelectronics.com/courses/getting-to-blinky-5-0/
https://www.kicad.org/help/learning-resources/

GreatFET One Documentation

12.3 Bonus Row

The bonus row of pins (J7) is not required. Design your neighbor without using bonus row pins if you can. However,
you may wish to keep J7 as an unpopulated header anyway (see Orientation below).

12.4 Orientation

It is possible for a user to plug in a neighbor rotated 180 degrees. This could be very bad! In order to discourage such
accidents, give the user visual cues that indicate the correct orientation.

The most obvious visual cue is the PCB shape. Use the template to match the shape of the GreatFET. If you need
a different shape, try to maintain aspects of the GreatFET shape, especially the curved west edge, to help the user
recognize the orientation. Alternatively you could indicate the curves with markings on the silkscreen layer of your
neighbor.

Another cue is the position of the mounting holes. The west mounting holes are closer together than the east mounting
holes. Your neighbor should have all four mounting holes if possible. Be careful not to place components or route
traces through the keep-out area around each mounting hole.

A third cue is the bonus row (J7). Even if you don’t need the bonus row, keep J7 as an unpopulated header if you can.
This makes the orientation easy to see, and it also allows the user to install a stackable header in J7 if desired.

Last, orient any major text in the same way as the title text on GreatFET.

12.5 Neighbor Identification

It is neighborly to enable automated detection of your neighbor. We like I2C for this because any number of neighbors
can be detected over the same pair of I2C pins without conflict. If you have a use for an I/O expander or other I2C
device on your neighbor, configure it with a unique address and reserve that address on the I2C Registry. Document
your I2C address in 7-bit format even if the datasheet for your I2C part uses 8-bit format.

If you don’t have a use for any particular I2C function, consider using an I2C EEPROM for identification. We’ve added
one to the template to make this easy. This will allow your neighbor to participate in our scheme for identifying multiple
neighbors that all share an I2C address on their EEPROMs.

The EEPROM is optional; you can remove it if you don’t want it. In most of our designs we have removed the EEPROM
and instead have used another I2C device with a unique address. If you’re not sure whether or not you want to keep the
EEPROM in your design, we suggest that you do. You can always choose to not populate it.

12.6 Making Your Neighbor Extra-neighborly

An extra-neighborly neighbor is stackable and allows the user maximum flexibility and hackability. Even if you haven’t
thought of an application that would require stacking of your neighbor with other neighbors, install stackable headers
if you can.

Unfortunately not all neighbors will be electrically compatible with each other even if they fit together mechanically,
but there are some things you can do to maximize compatibility.

If you have an option to use I2C as the primary interface to your neighbor, use it and configure your neighbor with
an I2C address that is unused by other neighbors. I2C Registry your I2C address on this wiki. If you can provide
solderable jumpers or some other means for a user to reconfigure the I2C address on your neighbor, do so. This could

32 Chapter 12. How to Design a Neighbor

GreatFET One Documentation

allow a user to solve unforeseen conflicts or to use multiple copies of your neighbor simultaneously. See Crocus for an
example. Document your I2C address in 7-bit format even if the datasheet for your I2C part uses 8-bit format.

Solder jumpers can also be used to provide alternative pin selections for any pin. See Begonia for an example.

If your neighbor uses SPI as its primary interface, consider ways to avoid conflicts with your chip select pin. One way
would be to use an I2C I/O expander for your chip select. See Crocus for an example.

Use no more power than you need. Stacked neighbors may only draw a total of 150 mA from the 3.3 V supply, so a
power hungry neighbor may be incompatible with other neighbors. We like to add a voltage regulator to neighbors that
can draw more than 50 mA. Also don’t draw current when you don’t need it. A great option is providing the ability to
switch on and off a voltage regulator or load switch from an I2C I/O expander.

Provide a way to power down or disable your neighbor so that it does not draw power or unnecessarily load I/O pins
while it is not in use. Two neighbors that are not compatible for simultaneous use may still be compatible if only one
is enabled at a time by software.

Do not load analog pins when you don’t need to. There is a very limited number of ADC/DAC pins, so conflicts are
quite likely. It may make sense to use a small analog switch to enable or disable a connection to one of these pins. See
Jasmine for an example. Another option is to provide your own ADC or DAC. This can be a good option if you expect
your neighbor to use the analog function 100% of the time. See Gladiolus for an example of both.

Break out all your pins. If your neighbor has a component with unused pins, break them out to test points or unpopulated
headers so that future people can experiment with them if desired.

12.7 Pin Selection

Choosing which pins (on J1, J2, and J7) to use for your neighbor can be a tricky process because there are so many
options! These tips can help:

12.7. Pin Selection 33

https://github.com/greatfet-hardware/crocus
https://github.com/greatfet-hardware/begonia
https://github.com/greatfet-hardware/crocus
https://github.com/greatfet-hardware/jasmine
https://github.com/greatfet-hardware/gladiolus

GreatFET One Documentation

• If your neighbor uses a common function such as I2C or SPI that is labeled on the GreatFET One pinout sticker,
use the pins suggested by the sticker.

– exception: The default CS (SPI chip select) can be used by only one SPI peripheral at a time. It is labeled
on the sticker so that people plugging in an external device have an easy-to-find default. You should use
some other GPIO pin or a pin controlled by an I2C I/O expander for this function.

– exception: The default ADC/DAC pin can be used by only one analog circuit at a time. It is similarly labeled
for external use. Avoid using it for your neighbor unless you expect it to be used sparingly and you provide
a way to switch off loading of that pin.

• Avoid using pins on the sticker for functions other than the use labeled on the sticker. For example, you could
use J1 pin 40 for GPIO instead of for SPI CIPO, but doing so would be a poor practice because other users and
neighbor designers will expect that pin to be available for its CIPO function.

• If your neighbor requires high speed parallel streaming with up to 16 pins, the SGPIO peripheral is probably
your best choice. There are various SGPIO pins available, but we have defined a set of default pin assignments
(shown on the sticker and used by greatfet logic) for 8-pin interfaces. Be aware that you will probably not be able
to use SGPIO simultaneously with another neighbor using SGPIO.

• Use the pinout tables in the Azalea README file (hint: clone the repository and view the file locally) or this
interactive table to find pins that have functions you require.

• If there is a neighbor that you specifically hope will be compatible with your neighbor, check its documentation
and design files to find out what pins it uses.

34 Chapter 12. How to Design a Neighbor

CHAPTER

THIRTEEN

BOARD NAMING

13.1 Code Names

When we start working on a neighbor or other hardware design related to the GreatFET project, we assign a code name
to the board. Our code names are names of flowers, and we usually choose a name starting with the next letter in the
alphabet. We update the list of neighbors as soon as a name is selected.

13.2 GreatFET Trademark

“GreatFET” and “GreatFET One” are trademarks of Great Scott Gadgets. In order to make it easier for end users to
know if their GreatFET-related devices are products of Great Scott Gadgets, we typically do not license these trademarks
to others. If you create GreatFET-related products, please do not use “GreatFET” in the product name. If you would
like to manufacture a clone of GreatFET One, for example, you could use the code name Azalea as the product name
or as a part of the product name.

It is perfectly acceptable (and encouraged!) to use “GreatFET” in descriptive text such as “a GreatFET neighbor” or
“compatible with GreatFET One” or “designed for GreatFET”.

We try to make it easy to follow these guidelines by using code names and avoiding trademarks in our published
hardware designs .

13.3 GreatFET and Great Scott Gadgets URLs

If you use one of our URLs such as https://greatscottgadgets.com/, https://greatscottgadgets.com/greatfet/, or https:
//github.com/greatscottgadgets/greatfet on a label of your own product, please clarify that it is our site, not yours. Here
is a good way to do that:

Designed for GreatFET: https://greatscottgadgets.com/greatfet/

An even better option is to use a URL pointing to your own informative web site (which links to ours where appropriate).

35

https://github.com/greatfet-hardware
https://greatscottgadgets.com/
https://greatscottgadgets.com/greatfet/
https://github.com/greatscottgadgets/greatfet
https://github.com/greatscottgadgets/greatfet
https://greatscottgadgets.com/greatfet/

GreatFET One Documentation

13.4 Naming Your Neighbor

If you create a neighbor or other GreatFET-related hardware design, we suggest that you follow our practice of using
flowery code names, but you are welcome to choose whatever name you like. Just be careful of our trademark guidelines
above. Please add your neighbor to the list!

36 Chapter 13. Board Naming

CHAPTER

FOURTEEN

I2C REGISTRY

The following I2C addresses (in 7-bit format) are reserved by the I2C specification or by certain neighbors:

address R/W neighbor
0x00 W reserved, general call
0x00 R reserved, start byte
0x01 reserved, CBUS
0x02 reserved, different bus formats
0x03 reserved, future purposes
0x04-0x07 reserved, high speed controller code
0x10-0x11 Violet
0x18-0x1f Operacake (HackRF add-on in optional neighbor mode)
0x27 Crocus
0x21 Foxglove
0x26-0x27 Narcissus
0x20 Jasmine
0x50 neighbor identification EEPROM
0x60 Gladiolus
0x78-0x7B reserved, 10-bit peripheral addressing
0x7C-0x7F R reserved, device ID

Looking for known I2C addresses for things other than GreatFET neighbors? Check out Adafruit’s handy list.

Confused about 7-bit vs. 8-bit I2C addresses? So is everyone! We try to use 7-bit addresses whenever possible because
that is how they are specified. Total Phase has a nice article on the subject that we suggest reading to make sense of it
all.

37

https://github.com/greatfet-hardware/crocus
https://github.com/greatfet-hardware/foxglove
https://github.com/greatfet-hardware/jasmine
https://github.com/greatfet-hardware/gladiolus
https://learn.adafruit.com/i2c-addresses/the-list
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.totalphase.com/support/articles/200349176-7-bit-8-bit-and-10-bit-I2C-Slave-Addressing

GreatFET One Documentation

38 Chapter 14. I2C Registry

CHAPTER

FIFTEEN

RELEASE PROCESS

This is the process for tagging and publishing a release. Change the release version number and paths as appropriate.
Release version numbers are in the form YYYY.MM.N where N is the release number for that month (usually 1).

15.1 tag the release

git tag -a v2013.07.1 -m 'release 2013.07.1'
git push --tags

15.2 make the release directory

cd /tmp
git clone ~/src/greatfet
cd greatfet
rm -rf .git*
mkdir firmware-bin
cd ..
mv greatfet greatfet-2013.07.1

15.3 copy/update RELEASENOTES from previous release

• prepend the current release notes to previous release notes

15.4 make second clone for firmware build

git clone --recursive ~/src/greatfet
cd greatfet/firmware/libopencm3
make
cd ..

39

GreatFET One Documentation

15.5 update the firmware VERSION_STRING and compile firmware

sed -i 's/git-${VERSION}/2013.07.1/' cmake/greatfet-common.cmake
mkdir build
cd build
cmake ..
make
cp flash_stub/flash_stub.dfu /tmp/greatfet-2013.07.1/firmware-bin/
cp greatfet_usb/greatfet_usb.bin /tmp/greatfet-2013.07.1/firmware-bin/

15.6 make the release archives

tar -cJvf greatfet-2013.07.1.tar.xz greatfet-2013.07.1
zip -r greatfet-2013.07.1.zip greatfet-2013.07.1

15.7 “Draft a new release” on github

• call it “release 2013.07.1”

• paste release notes (just for this release, not previous)

• upload .tar.xz and .zip files

15.8 announce the release

• irc

• greatfet mailing list

• twitter

40 Chapter 15. Release Process

	GreatFET and GNURadio
	Requirements
	Adding our blocks to GNURadio-companion

	Linux Distribution Python Version Matrix
	Troubleshooting
	Why do I get a No GreatFET devices found! error when my GreatFET is plugged in?

	Using GreatFET APIs
	Getting a GreatFET object
	Using APIs
	Debugging
	LED
	GPIO
	Logic Analyzer
	Pattern Generator
	UART
	ADC
	DAC
	SWRA124/Chipcon
	I2C

	greatfet_i2c
	Pin Usage
	Example Usage
	API

	greatfet_logic
	Pin Usage

	greatfet_msp430
	Pin Usage

	Getting Started with Firmware Development
	Fresh install
	Updating your repository
	Installing host tools
	Building and flashing firmware
	Re-Building and flashing firmware

	LibGreat Verb Signatures
	Describing Verb Signatures
	Repeat Specifiers
	Length Specifiers
	Element Groups
	Examples
	Omitting Verb Signatures

	GreatFET Classes
	Class Registry

	Neighbors
	already designed
	some progress made
	rough ideas

	How to Design a Neighbor
	Use a Template
	Required Elements
	Bonus Row
	Orientation
	Neighbor Identification
	Making Your Neighbor Extra-neighborly
	Pin Selection

	Board Naming
	Code Names
	GreatFET Trademark
	GreatFET and Great Scott Gadgets URLs
	Naming Your Neighbor

	I2C Registry
	Release Process
	tag the release
	make the release directory
	copy/update RELEASENOTES from previous release
	make second clone for firmware build
	update the firmware VERSION_STRING and compile firmware
	make the release archives
	“Draft a new release” on github
	announce the release

